博客
关于我
贝叶斯分类器做文本分类-单词计数向量和TF-IDF
阅读量:661 次
发布时间:2019-03-15

本文共 607 字,大约阅读时间需要 2 分钟。

浅谈文本向量化与TF-IDF技术

在自然语言处理领域,文本向量化是将文本内容转化为向量表示的重要步骤。常用的方法之一是单词计数(Tokenization),其核心是将文本分割成单词或短语,然后通过模型将这些文本转化为向量表示。在实际应用中,以下优化方法可以显著提升向量化效果:

典型的单词计数方法使用CountVectorizer类进行实现。通过fit_transform方法拟合样本数据,生成稀疏矩阵。这一过程的核心在于准确反映文本中单词的频率分布。

值得注意的是,长句对模型性能有显著影响,建议采用L2归一化处理。这种方法可以有效平衡各单词出现频率之间的差距,避免某些高频词占据过多权重。

TF-IDF(Term Frequency-Inverse Document Frequency)是一种实用的词权重计算方法。它结合了单词在文档中的频率(TF)和逆文档频率(IDF)。 IDFs越低,说明单词在整个语料库中越为特殊。这种方法能有效降低停用词的影响,突出语义关键词。适合用于文本清洗和信息提取的场景。

与传统单词计数相比,TF-IDF能更准确地反映单词的重要性,从而提升模型性能。在实际编码过程中,推荐使用TfidfVectorizer类,这一工具集可以帮助实现高效的特征提取。

这些技术手段在文本分类、情感分析等任务中都展现出显著优势。合理搭配这些方法能够大幅提升模型性能,助力于更好地处理人工语言数据。

转载地址:http://vtrmz.baihongyu.com/

你可能感兴趣的文章
MySQL中你必须知道的10件事,1.5万字!
查看>>
MySQL中使用IN()查询到底走不走索引?
查看>>
Mysql中使用存储过程插入decimal和时间数据递增的模拟数据
查看>>
MySql中关于geometry类型的数据_空的时候如何插入处理_需用null_空字符串插入会报错_Cannot get geometry object from dat---MySql工作笔记003
查看>>
mysql中出现Incorrect DECIMAL value: '0' for column '' at row -1错误解决方案
查看>>
mysql中出现Unit mysql.service could not be found 的解决方法
查看>>
mysql中出现update-alternatives: 错误: 候选项路径 /etc/mysql/mysql.cnf 不存在 dpkg: 处理软件包 mysql-server-8.0的解决方法(全)
查看>>
Mysql中各类锁的机制图文详细解析(全)
查看>>
MySQL中地理位置数据扩展geometry的使用心得
查看>>
Mysql中存储引擎简介、修改、查询、选择
查看>>
Mysql中存储过程、存储函数、自定义函数、变量、流程控制语句、光标/游标、定义条件和处理程序的使用示例
查看>>
mysql中实现rownum,对结果进行排序
查看>>
mysql中对于数据库的基本操作
查看>>
Mysql中常用函数的使用示例
查看>>
MySql中怎样使用case-when实现判断查询结果返回
查看>>
Mysql中怎样使用update更新某列的数据减去指定值
查看>>
Mysql中怎样设置指定ip远程访问连接
查看>>
mysql中数据表的基本操作很难嘛,由这个实验来带你从头走一遍
查看>>
Mysql中文乱码问题完美解决方案
查看>>
mysql中的 +号 和 CONCAT(str1,str2,...)
查看>>