博客
关于我
贝叶斯分类器做文本分类-单词计数向量和TF-IDF
阅读量:661 次
发布时间:2019-03-15

本文共 607 字,大约阅读时间需要 2 分钟。

浅谈文本向量化与TF-IDF技术

在自然语言处理领域,文本向量化是将文本内容转化为向量表示的重要步骤。常用的方法之一是单词计数(Tokenization),其核心是将文本分割成单词或短语,然后通过模型将这些文本转化为向量表示。在实际应用中,以下优化方法可以显著提升向量化效果:

典型的单词计数方法使用CountVectorizer类进行实现。通过fit_transform方法拟合样本数据,生成稀疏矩阵。这一过程的核心在于准确反映文本中单词的频率分布。

值得注意的是,长句对模型性能有显著影响,建议采用L2归一化处理。这种方法可以有效平衡各单词出现频率之间的差距,避免某些高频词占据过多权重。

TF-IDF(Term Frequency-Inverse Document Frequency)是一种实用的词权重计算方法。它结合了单词在文档中的频率(TF)和逆文档频率(IDF)。 IDFs越低,说明单词在整个语料库中越为特殊。这种方法能有效降低停用词的影响,突出语义关键词。适合用于文本清洗和信息提取的场景。

与传统单词计数相比,TF-IDF能更准确地反映单词的重要性,从而提升模型性能。在实际编码过程中,推荐使用TfidfVectorizer类,这一工具集可以帮助实现高效的特征提取。

这些技术手段在文本分类、情感分析等任务中都展现出显著优势。合理搭配这些方法能够大幅提升模型性能,助力于更好地处理人工语言数据。

转载地址:http://vtrmz.baihongyu.com/

你可能感兴趣的文章
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
MySQL 有什么优点?
查看>>
mysql 权限整理记录
查看>>
mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
查看>>
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询,正数降序排序,负数升序排序
查看>>
MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
查看>>
mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
查看>>
mysql 死锁(先delete 后insert)日志分析
查看>>
MySQL 死锁了,怎么办?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 添加列,修改列,删除列
查看>>
mysql 添加索引
查看>>
MySQL 添加索引,删除索引及其用法
查看>>
MySQL 用 limit 为什么会影响性能?
查看>>